Xi’an Jiaotong University

Processes and Multitasking

COMP402127: Introduction to Computer Systems

Hao Li
Xi’an Jiaotong University

Xi’an Jiaotong University

Today

m Processes
m System Calls
m Process Control

Xi’an Jiaotong University

Operating Systems

EEmmn

A), 1957

IBM 704 at Langley Research Center (NAS
https://commons.wikimedia.org/w/index.php?curid=6455009

Xi’an Jiaotong University

Earliest days: One batch job at a time

IBM 704 at Langley Research Center (NASA), 1957
https://commons.wikimedia.org/w/index.php?curid=6455009

How can many people share one

computer efficiently?

Xi’an Jiaotong University

Multiprocessing
Memory Memory

Stack Stack

Heap Heap

Data Data

Code Code

CPU CPU
Registers Registers

m Computer runs many processes simultaneously

= Applications for one or more users

Memory

Stack

Heap

Data

Code

CPU

Registers

= Web browsers, email clients, editors, ...

= Background tasks

= Monitoring network & I/O devices

Xi’an Jiaotong University

Multiprocessing Example

& shark.ics.cs.cmu.edu - PuTTY
top - 12:52:25 up 7:50, 12 users, load average: 4.94, 4.06, 2.72
sks: 425 total, 7 running, 418 sleeping, 0 stopped, 0 zombie
1(s): 11.2 us, 21.9 sy, 0.0 ni, 66.0 id, 0.0 wa, 0.0 hi, 0.9 si, 0.0 st
KiB Mem : 24508768 total, 19088248 free, 3228068 used, 2192452 buff/cache
KiB Swap: 1048572 total, 1048572 free, 0 used. 20822672 avail Mem

TIME+ COMMAND
mdriver-dbg
cpptools
sshd
afs_rxlist+
mdriver-dbg
1d
kworker/5: 1
kworker/1:0
kworkelflJ+

z1longz 1324
zilongz 0 0 256 3168 8428
julietf 164876 1284
root 0 0
julietf 20.0t 112840 1348
Jjjli2 130708 16896 1692
896 root 20) 0 0 0]
root 0 0 0]

16 root) 0 0 0]
root 2 0 0 0 0
root C 0 0 0]

7 root) 0 0 0 0
root 20 0 0 0 0
zilongz 0 1051004 158028 19260

58 bbendou) 0 898344 64932 18832
30 yixuey g“ 0 903052 70108 18976
zweinber 164268 2552 1568

kworke

IOWWRO

o
-

OO WIC

khulkpl’lg+
) node

node

node

top

OO0 OoORNOOUY

Aunununuunununutnooxun I
Hwuiu oo
RFRRRENARAMNORONG SN

¢ _.
o w i

m Running program “top” on hammerheadshark
= System has 425 “tasks”, 7 of which are active
= |dentified by Process ID (PID), user account, command name

Xi’an Jiaotong University

Processes

m Definition: A process is an instance of a running Memory

program. Stack

" One of the most profound ideas in computer science Heap

"= Not the same as “program” or “processor” Data

Code

m Process provides each program with two key CPU
abstractions: Registers

" Private address space

= Each program seems to have exclusive use of main
memory.

= Provided by kernel mechanism called virtual memory
= Logical control flow
= Each program seems to have exclusive use of the CPU
= Provided by kernel mechanism called context switching

Xi’an Jiaotong University

Control Flow

m Processors do only one thing:

" From startup to shutdown, each CPU core simply reads and executes
a sequence of machine instructions, one at a time *

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
) inst
Time o2
inst;

inst, * many modern CPUs execute

<shutdown> several instructions at once
and/or out of program order, but
this is invisible to the programmer

9

Context Switching

m Processes are managed by a shared chunk of memory-
resident OS code called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some existing process.

m Control flow passes from one process to another via a

context switch
Process A : Process B
|
: user code
I kernel code } context switch
Time user code

kernel code } context switch

user code

10

Xi’an Jiaotong University

Context Switching (Uniprocessor)

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data ces Data
Code : Code Code
: Saved Saved
registers reqgisters

CPU

Registers

m Single processor executes multiple processes concurrently
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (like last week)
= Register values for nonexecuting processes saved in memory

1

Xi’an Jiaotong University

Context Switching (Uniprocessor)

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved Saved
regali/srters registers reqgisters
CPU
Registers

m Save current registers in memory

12

Xi’an Jiaotong University

Context Switching (Uniprocessor)

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved Saved
registers registers reqgisters
CPU
Registers

m Schedule next process for execution

13

Xi’an Jiaotong University

Context Switching (Uniprocessor)

Memory
Stack Stack Stack
Heap Heap Heap
Data Data cee Data
Code Code Code
Saved Saved Saved
registers registers reqgisters
CPU
Registers

m Load saved registers and switch address space (context switch)

14

Context Switching (Multicore)

Memory

Stack Stack Stack
Heap Heap Heap
Data Data see Data
Code Code Code

Saved

reqgisters
CPU CPU m Multicore processors
Registers Registers = Multiple CPUs on single chip

= Share main memory (and some caches)
= Each can execute a separate process

= Scheduling of processors onto cores
done by kernel

15

Xi’an Jiaotong University

User View of Concurrent Processes

m Two processes run concurrently (are concurrent) if their
execution overlaps in time

m Otherwise, they are sequential

m Appears as if concurrent processes run in parallel with
each other

= This means they can interfere with each other
(more on that in a couple weeks)

Aand B
concurrent
Process A Process B Process C
~—" 1| AandC

e

-
o / concurrent

= ~ Band C

\ sequential

Time

A A

16

Xi’an Jiaotong University

Traditional (Uniprocessor) Reality

m Only one process runs at a time
m A and B execution is interleaved, not truly concurrent
m Similarly for Aand C

m Still possible for A and B / A and C to interfere with each
other

Process A Process B Process C

Time

17

Xi’an Jiaotong University

How does the kernel take control?

m The CPU executes instructions in sequence

m We don’t write “now run kernel code” in our programes...
= Ordowe??

Physical control flow
<startup>
. b <kernel entry>
inst, .
. inst,
) inst,)
Time Inst,
syscall .
inst,
inst_
<kernel exit>
<shutdown> ernel et

18

Xi’an Jiaotong University

Today

m Processes
m System Calls
m Process Control

19

Xi’an Jiaotong University

System Calls

m Whenever a program wants to .
. . fopen.c
cause an effect outside its OWN | rrie *fopen(const char *fname,

. const char *mode) {
process, it must ask the kernel e Tl - P (el §

for help if ('flags) return NULL;
int £fd = open (fname, flags,

m Examples: DEFPERMS) ;
if (£d == -1) return NULL;

n Read/write files return fdopen (fd, mode) ;

) }
® Get current time

= Allocate RAM (sbrk) / o?:i.ﬂsbal e

" Create new processes open:

mov $SYS open, %eax

syscall

cmp $SYS error thresh, %rax
ja __ syscall error

ret

20

Xi’an Jiaotong University

All the system calls

accept
acceptd

acct

add_key
adjtimex

bind

bpf

brk

capget

capset

chdir

chroot
clock_adjtime
clock_getres
clock_gettime
clock_nanosleep
clock_settime
clone

clone3

close
close_range
connect
copy_file_range
delete_module
dup

dup3
epoll_createl
epoll_ctl
epoll_pwait
epoll_pwait2
eventfd2
execve
execveat

exit
exit_group
faccessat
faccessat2
fallocate

fanotify_init
fanotify_mark
fchdir
fchmod
fchmodat
fchown
fchownat
fdatasync
fgetxattr
finit_module
flistxattr
flock
fremovexattr
fsconfig
fsetxattr
fsmount
fsopen

fspick

fsync

futex
futex_waitv
get_mempolicy
get_robust_list
getcpu
getcwd
getdents64
getegid
geteuid
getgid
getgroups
getitimer
getpeername
getpgid
getpid
getppid
getpriority
getrandom
getresgid

getresuid

getrlimit
getrusage

getsid
getsockname
getsockopt

gettid
gettimeofday
getuid

getxattr
init_module
inotify_add_watch
inotify_initl
inotify_rm_watch
io_cancel
io_destroy
io_getevents
io_pgetevents
io_setup
io_submit
io_uring_enter
io_uring_register
io_uring_setup
ioctl

ioprio_get
ioprio_set

kemp
kexec_file_load
kexec_load

keyctl

kill
landlock_add_rule
landlock_create_ruleset
landlock_restrict_self
Igetxattr

linkat

listen

listxattr

llistxattr
lookup_dcookie
Iremovexattr
Isetxattr
madvise

mbind
membarrier
memfd_create
memfd_secret
migrate_pages
mincore
mkdirat
mknodat
mlock

mlock2
mlockall
mount
mount_setattr
move_mount
move_pages
mprotect
mq_getsetattr
mg_notify
mgq_open
mq_timedreceive
mg_timedsend
mq_unlink
mremap
msgctl

msgget

msgrev
msgsnd

msync
munlock
munlockall
munmap
name_to_handle_at
nanosleep

nfsservctl
open_by_handle_at
open_tree

openat

openat2
perf_event_open
personality
pidfd_getfd
pidfd_open
pidfd_send_signal
pipe2

pivot_root
pkey_alloc
pkey_free
pkey_mprotect
ppoll

prctl

pread64

preadv

preadv2

prlimit64
process_madvise
process_mrelease
process_vm_readv
process_vm_writev
pselect6

ptrace

pwrite64

pwritev

pwritev2

quotactl
quotactl_fd

read

readahead
readlinkat

readv

reboot

recvfrom

recvmmsg
recvmsg
remap_file_pages
removexattr
renameat

renameat2
request_key
restart_syscall

rseq

rt_sigaction
rt_sigpending
rt_sigprocmask
rt_sigqueueinfo
rt_sigreturn
rt_sigsuspend
rt_sigtimedwait
rt_tgsigqueueinfo
sched_get_priority_max
sched_get_priority_min
sched_getaffinity
sched_getattr
sched_getparam
sched_getscheduler
sched_rr_get_interval
sched_setaffinity
sched_setattr
sched_setparam
sched_setscheduler
sched_yield

seccomp

semctl

semget

semop

semtimedop
sendmmsg

sendmsg

sendto
set_mempolicy

set_mempolicy_home_node

set_robust_list
set_tid_address
setdomainname
setfsgid
setfsuid
setgid
setgroups
sethostname
setitimer
setns

setpgid
setpriority
setregid
setresgid
setresuid
setreuid
setrlimit
setsid
setsockopt
settimeofday
setuid
setxattr
shmat

shmctl
shmdt
shmget
shutdown
sigaltstack
signalfd4
socket
socketpair
splice

statx
swapoff
swapon
symlinkat
sync

sync_file_range
sync_file_range2
syncfs

sysinfo

syslog

tee

tgkill
timer_create
timer_delete
timer_getoverrun
timer_gettime
timer_settime
timerfd_create
timerfd_gettime
timerfd_settime
times

tkill

umask

umount2
uname

unlinkat
unshare
userfaultfd
utimensat
vhangup
vmsplice

wait4

waitid

write

writev

21

System Call Error Handling

m Almost all system-level operations can fail
" Only exception is the handful of functions that return void
= You must explicitly check for failure

m On error, most system-level functions return -1 and set
global variable errno to indicate cause.

m Example:

pid t pid = fork();

if (pid == -1) {
fprintf (stderr, "fork error: %$s\n", strerror(errno)):;
exit (1) ;

22

Xi’an Jiaotong University

Error-reporting functions

m Can simplify somewhat using an error-reporting function:

void unix error (char *msg) /* Unix-style error */

{

fprintf (stderr, "%$s: %s\n", msg, strerror (errno)):;
exit(1l);

} S~—__

pid t pid = fork() ;
if (pid == -1)
unix error ("fork error");

Note: csapp.c exits with 0.

m Not always appropriate to exit when something goes
wrong.

23

Xi’an Jiaotong University

Error-handling Wrappers

m We simplify the code we present to you even further by
using Stevens!-style error-handling wrappers:

pid t Fork(void)

{
pid t pid = fork();

if (pid == -1)
unix error ("Fork error");
return pid;

pid = Fork(); // Only returns if successful

m NOT what you generally want to do in a real application

le.g., in “UNIX Network Programming: The sockets networking API“ W. Richard Stevens

24

Xi’an Jiaotong University

Today

m Processes
m System Calls
m Process Control

25

Xi’an Jiaotong University

Obtaining Process IDs

m pid t getpid(void)

= Returns PID of current process

m pid t getppid(void)

= Returns PID of parent process

26

Xi’an Jiaotong University

Process States

At any time, each process is either:

m Running

® Process is either executing instructions, or it could be executing
instructions if there were enough CPU cores.

m Blocked / Sleeping

" Process cannot execute any more instructions until some external
event happens (usually I/0O).

m Stopped

" Process has been prevented from executing by user action
(control-2).

m Terminated / Zombie

" Process is finished. Parent process has not yet been notified.

27

Xi’an Jiaotong University

Terminating Processes

m Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine
= (Calling the exit function

m void exit(int status)
= Terminates with an exit status of status
= Convention: normal return status is O, nonzero on error

= Another way to explicitly set the exit status is to return an integer value
from the main routine

m exitis called once but never returns.

28

Xi’an Jiaotong University

Creating Processes

m Parent process creates a new running child process by
calling fork

m int fork (void)
= Returns 0 to the child process, child’s PID to parent process
= Child is almost identical to parent:

= Child get an identical (but separate) copy of the parent’s virtual
address space.

= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

m fork is interesting (and often confusing) because
it is called once but returns twice

29

Xi’an Jiaotong University

Conceptual View of fork

Memory

Stack

Heap 9

Data
Code

Saved
registers

CPU

Registers

m Make complete copy of execution state
= Designate one as parent and one as child
= Resume execution of parent or child

Memory

parent child
Stack Stack
Heap Heap
Data Data
Code Code
Saved Saved

registers registers
CPU

Registers

= (Optimization: Use copy-on-write to avoid copying RAM)

30

Xi’an Jiaotong University

fork Example

m Call once, return twice

int main(int argc, char** argv)

¢ m Concurrent execution

= Can’t predict execution
order of parent and child

pid t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /* Child */
printf("child : x=%d\n", ++x);
return O;

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

} fork.c

linux> ./fork
parent: x=0
child : x=2

linux> ./fork
child : x=2
parent: x=0

linux> ./fork
parent: x=0
child : x=2

linux> ./fork
parent: x=0
child : x=2

31

fork Example

int main(int argc, char** argv)

m Call once, return twice

{ m Concurrent execution
[SEbE] 15 j2RhEl = Can’t predict execution
int x = 1; order of parent and child
pid = Fork(); m Duplicate but separate
if (pid == 0) { /* child */

printf ("child : x=3d\n", ++x); address space

return 0; " x has avalue of 1 when
} fork returns in parent and
/* Parent */ child
printf ("parent: x=%d\n", --x); = Subsequent changes to x

return O; .
are independent

m Shared open files

= stdoutis the samein
both parent and child

linux> ./fork
parent: x=0
child : x=2

32

Xi’an Jiaotong University

Modeling fork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:

= Each vertex is the execution of a statement
" a->b means a happens before b

= Edges can be labeled with current value of variables
" printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible
total ordering.

= Total ordering of vertices where all edges point from left to right

33

Xi’an Jiaotong University

Process Graph Example

int main(int argc, char** argv)

{

pid t pid;
int x = 1;
child: x=2 :
pid = Fork(); E?Ltf e:at Child
if (pid == 0) { /* Child */ P
. PRI - x=% " . == arent: x=0
printf("child : x=%d\n", ++x); o X o P o - Parent
return O; main fork printf exit

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

} fork.c

34

Xi’an Jiaotong University

Interpreting Process Graphs

m Original graph:

child: x=2
>® »®
printf exit
x==1 parent: x=0
® >® »®
main for printf exit

k
Feasible total ordering:

m Relabled graph: m
"o 4
J a b e C f d
>@

b c

) 4

ne
e

llllll

35

Xi’an Jiaotong University

fork Example: Two consecutive forks

void fork2 ()

{

printf ("LO\n") ;

fork () ;

printf ("L1\n") ;

fork () ;

printf ("Bye\n") ;
forks.c

Bye
®
printf
Ll Bye
>@— —> >®
printf fork printf
Bye
.0
printf
L0 Ll ‘ Bye
o— —>@ >@— —» >@®
printf fork printf ork printf

Feasible output:
LO

Ll

Bye

Bye

Ll

Bye

Bye

Infeasible output:
LO

Bye

Ll

Bye

Ll

Bye

Bye

36

Xi’an Jiaotong University

fork Example: Nested forks in parent

void fork4 ()
{
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ;
if (fork()

}

}
printf ("Bye\n") ;

} forks.c

1= 0) {
printf ("L2\n") ;

Bye
printf

LO L1l

Bye

‘ printf
L2 B
> >0 #ye

[> >o—
printf fork printf

Feasible or Infeasible?
LO

Bye

L1l

Bye

Bye

L2

fork printf printf

Feasible or Infeasible?
LO

L1

Bye

Bye

L2

Bye

37

fork Example: Nested £orks in children

void fork5()

{
printf ("LO\n") ;
if (fork() 0)

if (fork()

}

}
printf ("Bye\n") ;

{

printf ("L1\n") ;

0) {

printf ("L2\n") ;

forks.c

L2 Bye
pig.ntf prntf
Ll Bye
>0 >@ B
printf fork printf
L0 Bye
° — >e

printf fbrk printf

Feasible or Infeasible?
LO

Bye

L1

Bye

Bye

L2

Feasible or Infeasible?
LO

Bye

L1l

L2

Bye

Bye

38

Xi’an Jiaotong University

Reaping Child Processes
m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead

m Reaping
= Performed by parent on terminated child (using wait orwaitpid)

= Parent is given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child should be reaped by init process (pid == 1)

= Unless it was init that terminated! Then need to reboot...
= So, only need explicit reaping in long-running processes
= e.g., shells and servers

39

Xi’an Jiaotong University

° void fork7() {
Zombie if (fork() == 0) {
/* Child */
rintf ("Terminating Child, PID = %d\n", getpid()):;
Example e : 1%
} else {
printf ("Running Parent, PID = %d\n", getpid()):
while (1)
; /* Infinite loop */
linux> ./forks 7 & }
[1] 6639 I

Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh .
6639 ttyp9 00:00:03 forks ps shows child process as
6640 ttyp9 00:00:00 forks <defunct></ “defunct” (i.e., a zombie)
6641 ttyp9 00:00:00 ps
linux> kill 6639

[1] Terminated m Killing parent allows child to
linux> ps be reaped by init
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh}
6642 ttyp9 00:00:00 ps

40

Xi’an Jiaotong University

Non-
terminating
Child Example

void fork8 ()
{

if (fork() 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid()) ;
while (1)
; /* Infinite loop */

} else {
printf ("Terminating Parent, PID = %d\n",
getpid()) ;
exit (0) ;
}
linux> ./forks 8 }
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even
linux> ps though parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 fork m Must kill child explicitly, or else will
SOU ATk SUSUIvBRL keep running indefinitely
linux> kill 6676

linux> ps
PID TTY

TIME CMD

6585 ttyp9
6678 ttyp9

00:00:00 tcsh
00:00:00 ps

4

Xi’an Jiaotong University

wait: Synchronizing with Children

m Parent reaps a child with one of these system calls:

m pid t wait(int *status)

= Suspends current process until one of its children terminates
= Returns PID of child, records exit status in status

m pid t waitpid(pid t pid, int *status,
int options)
= More flexible version of wait:
= Can wait for a specific child or group of children

= Can be told to return immediately if there are no children to reap

42

Xi’an Jiaotong University

wait: Synchronizing with Children

void fork9() {
int child status;
HC exit
»®- —>@
if (fork() == 0) { printf
printf ("HC: hello from child\n");
exit (0) ;
CT
} else { B
printf ("HP: hello from parent\n"); .- Aﬂﬂf v — =ze
wait (&child status); fork printf wait printf
printf ("CT: child has terminated\n");
}
printf ("Bye\n") ;
} forks.c
Feasible output(s): Infeasible output:
HC HP HP
HP HC CT
CT CT Bye

Bye Bye HC

43

Xi’an Jiaotong University

wait: Status codes

m Return value of wait is the pid of the child process that
terminated
m If status != NULL, then the integer it points to will be
set to a value that indicates the exit status
" More information than the value passed to exit

= Must be decoded, using macros defined in sys/wait.h

= WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED

= See textbook for details

44

Another wait Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklO() {
pid t pid[N];
int i, child status;

for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0) {
exit (100+i); /* Child */
}
for (i = 0; i < N; i++) { /* Parent */
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

45

Xi’an Jiaotong University

waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int *status, int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void forkll () {
pid t pid[N];
int i;
int child status;

for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = N-1; i >= 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

46

Xi’an Jiaotong University

execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file £filename

= Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)

= _.with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
» getenv, putenv, printenv
m Overwrites code, data, and stack

= Retains PID, open files and signal context

m Called once and never returns

= .exceptif thereis an error
47

Xi’an Jiaotong University

execve Example

m Execute "/bin/ls -1t /usr/include" in child process
using current environment:

envp[n] = NULL
envp[n-1] ——> "PWD=/usr/droh"
, envp [0] —> "USER=droh"
environ >
myargv [argc] = NULL
(argc == 3) myargv 2] ——> " /usr/include"
myargv[1l] 3 n_]gm
myargv ————> iyargy |l —> " /bin/1s"

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve (myargv[0], myargv, environ) < 0) {
printf ("%$s: %s\n", myargv[0], strerror (errno)) ;

exit(1l);

48

Xi’an Jiaotong University

Bottom of stack

Null-terminated

Stru Ctu re Of environment variable strings e
Null-terminated
the StaCk When ___,| command-line arg strings
anew program | o |
Sta rtS ; envp [n—1] | environ
_| (global var)
| envp [0] el PRl gy
E argv[argc] = NULL 1 envp
| argv[argc-1] (in $rdx)
argv _______'-_-_—_-’-o argv[0]
(in $rsi)
argc Stack frame for
(in $rdi) libc start main Top of stack

Future stack frame for
main

49

Xi’an Jiaotong University

execve and process memory layout

User stack } Private, demand-zero ™ To load and run a new
program a.out in the
l current process using

execve.
libc.so T

data [Memory mapped region

m Freevin area struct’s

} Shared, file-backed

text | forsharedlibraries and page tables for old areas
1 m Createvm_area struct’s
and page tables for new
Runtime heap (via malloc) } Private, demand-zero areas
= Programs and initialized data
Uninitialized data (.bss) } Private, demand-zero backed by object files.
a.out = _bss and stack backed by
data F——— [Initialized data (.data) anonymous files.
toxt Private, file-backed
Xt — Program text (.text)

m Set PCto entry pointin
0 . text

® Linux will fault in code and
data pages as needed.

50

Xi’an Jiaotong University

Discussion

m Why separate fork() and execve()?
" |n Windows, these two processes are done by a single system call
CreateProcess ()
m Sharing system handlers
" 1s | grep a.txt
= Step 1: fork() # fork from shell
"= Step 2: pipe() # create pipe for IPC
= Step 3: fork() and execve(ls) # create 1s
» Then dup2 stdout to read end of pipe
= Step 4: fork() and execve (grep) # create grep
» Then dup2 stdin to write end of pipe

51

Xi’an Jiaotong University

Summary

m Processes

= At any given time, system has multiple active processes
= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

52

Xi’an Jiaotong University

Summary (cont.)

m Spawning processes
" Call fork

" One call, two returns

m Process completion
" Callexit

® One call, no return

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs
= Call execve (or variant)

" One call, (normally) no return

53

	幻灯片 1
	幻灯片 2: Today
	幻灯片 3: Operating Systems
	幻灯片 4: Earliest days: One batch job at a time
	幻灯片 5: How can many people share one computer efficiently?
	幻灯片 6: Multiprocessing
	幻灯片 7: Multiprocessing Example
	幻灯片 8: Processes
	幻灯片 9: Control Flow
	幻灯片 10: Context Switching
	幻灯片 11: Context Switching (Uniprocessor)
	幻灯片 12: Context Switching (Uniprocessor)
	幻灯片 13: Context Switching (Uniprocessor)
	幻灯片 14: Context Switching (Uniprocessor)
	幻灯片 15: Context Switching (Multicore)
	幻灯片 16: User View of Concurrent Processes
	幻灯片 17: Traditional (Uniprocessor) Reality
	幻灯片 18: How does the kernel take control?
	幻灯片 19: Today
	幻灯片 20: System Calls
	幻灯片 21: All the system calls
	幻灯片 22: System Call Error Handling
	幻灯片 23: Error-reporting functions
	幻灯片 24: Error-handling Wrappers
	幻灯片 25: Today
	幻灯片 26: Obtaining Process IDs
	幻灯片 27: Process States
	幻灯片 28: Terminating Processes
	幻灯片 29: Creating Processes
	幻灯片 30: Conceptual View of fork
	幻灯片 31: fork Example
	幻灯片 32: fork Example
	幻灯片 33: Modeling fork with Process Graphs
	幻灯片 34: Process Graph Example
	幻灯片 35: Interpreting Process Graphs
	幻灯片 36: fork Example: Two consecutive forks
	幻灯片 37: fork Example: Nested forks in parent
	幻灯片 38: fork Example: Nested forks in children
	幻灯片 39: Reaping Child Processes
	幻灯片 40: Zombie Example
	幻灯片 41: Non- terminating Child Example
	幻灯片 42: wait: Synchronizing with Children
	幻灯片 43: wait: Synchronizing with Children
	幻灯片 44: wait: Status codes
	幻灯片 45: Another wait Example
	幻灯片 46: waitpid: Waiting for a Specific Process
	幻灯片 47: execve: Loading and Running Programs
	幻灯片 48: execve Example
	幻灯片 49: Structure of the stack when a new program starts
	幻灯片 50: execve and process memory layout
	幻灯片 51: Discussion
	幻灯片 52: Summary
	幻灯片 53: Summary (cont.)

