
Xi’an Jiaotong University

1

Cache Memories

COMP402127: Introduction to Computer Systems
https://xjtu-ics.github.io/

Danfeng Shan
Xi’an Jiaotong University

Xi’an Jiaotong University

2

Today

¢ Cache memory organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

Xi’an Jiaotong University

3

Cache Memories

¢ Cache memories are small, fast SRAM-based memories
managed automatically in hardware
§ Hold frequently accessed blocks of main memory

¢ CPU looks first for data in cache
¢ Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache
memory

Xi’an Jiaotong University

4

What it Really Looks Like

Bus interface

ALU

Register file

CPU chip

Cache
memory

Core i7-3960XAMD FX 8150Nehalem

Xi’an Jiaotong University

6

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size
 = S x E x B data bytes

valid bit

Xi’an Jiaotong University

7

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

Xi’an Jiaotong University

8

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Xi’an Jiaotong University

9

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid? +

block offset

tag

Xi’an Jiaotong University

10

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid? +

int (4 Bytes) is here

block offset

If tag doesn’t match (= miss): old line is evicted and replaced

Xi’an Jiaotong University

11

Direct-Mapped Cache Simulation
4-bit addresses (address space size M=16 bytes)
S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0
v Tag Block

0
0
0

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

0 M[0-1]Set 0
Set 1
Set 2
Set 3

Xi’an Jiaotong University

12

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

2 lines per set

S sets

Xi’an Jiaotong University

13

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes (= hit)

block offset

tag

Xi’an Jiaotong University

14

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes (= hit)

block offset

tag 54

short int (2 Bytes) is here

No match or not valid (= miss):
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

Xi’an Jiaotong University

15

2-Way Set Associative Cache Simulation

4-bit addresses (M=16 bytes)
S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

Xi’an Jiaotong University

16

What about writes?
¢ Multiple copies of data exist:

§ L1, L2, L3, Main Memory, Disk

¢ What to do on a write-hit?
§ Write-through (write immediately to memory)
§ Write-back (defer write to memory until replacement of line)

§ Needs a dirty bit (set if data has been written to)

¢ What to do on a write-miss?
§ Write-allocate (load into cache, update line in cache)

§ Good if more writes to the location will follow
§ No-write-allocate (writes straight to memory, does not load into cache)

¢ Typical
§ Write-through + No-write-allocate
§ Write-back + Write-allocate

0 1 2 B-1tagd

B = 2b bytesdirty bit

v

valid bit

Xi’an Jiaotong University

17

Practical Write-back Write-allocate

¢ A write to address X is issued
¢ If it is a hit

§ Update the contents of block
§ Set dirty bit to 1 (bit is sticky and only cleared on eviction)

¢ If it is a miss
§ Fetch block from memory (per a read miss)
§ The perform the write operations (per a write hit)

¢ If a line is evicted and dirty bit is set to 1
§ The entire block of 2b bytes are written back to memory
§ Dirty bit is cleared (set to 0)
§ Line is replaced by new contents

0 1 2 B-1tagd

B = 2b bytesdirty bit

v

valid bit

Xi’an Jiaotong University

18

Why Index Using Middle Bits?

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

t bits 0…01 100
Address of int:

find set

Standard Method:
Middle bit indexing

t bits1…11 100
Address of int:

find set

Alternative Method:
High bit indexing

Xi’an Jiaotong University

19

Illustration of Indexing
Approaches
¢ 64-byte memory

§ 6-bit addresses

¢ 16 byte, direct-mapped cache
¢ Block size = 4. (Thus, 4 sets; why?)
¢ 2 bits tag, 2 bits index, 2 bits offset

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Xi’an Jiaotong University

20

Middle Bit Indexing

¢ Addresses of form TTSSBB
§ TT Tag bits
§ SS Set index bits
§ BB Offset bits

¢ Makes good use of spatial locality

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Xi’an Jiaotong University

21

High Bit Indexing

¢ Addresses of form SSTTBB
§ SS Set index bits
§ TT Tag bits
§ BB Offset bits

¢ Program with high spatial locality
would generate lots of conflicts

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Xi’an Jiaotong University

22

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

Xi’an Jiaotong University

24

Kunpeng 920 Cache Hierarchy

Xi’an Jiaotong University

25

Kunpeng 920 Cache Hierarchy

Xi’an Jiaotong University

26

Cache Performance Metrics
¢ Miss Rate

§ Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

§ Typical numbers (in percentages):
§ 3-10% for L1
§ can be quite small (e.g., < 1%) for L2, depending on size, etc.

¢ Hit Time
§ Time to deliver a line in the cache to the processor

§ includes time to determine whether the line is in the cache
§ Typical numbers:

§ 4 clock cycle for L1
§ 10 clock cycles for L2

¢ Miss Penalty
§ Additional time required because of a miss

§ typically 50-200 cycles for main memory (Trend: increasing!)

Xi’an Jiaotong University

27

Let’s think about those numbers
¢ Huge difference between a hit and a miss

§ Could be 100x, if just L1 and main memory

¢ Would you believe 99% hits is twice as good as 97%?
§ Consider this simplified example:

 cache hit time of 1 cycle
 miss penalty of 100 cycles

§ Average access time:
 97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
 99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

¢ This is why “miss rate” is used instead of “hit rate”

Xi’an Jiaotong University

28

Writing Cache Friendly Code

¢ Make the common case go fast
§ Focus on the inner loops of the core functions

¢ Minimize the misses in the inner loops
§ Repeated references to variables are good (temporal locality)
§ Stride-1 reference patterns are good (spatial locality)

Xi’an Jiaotong University

29

Today

¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

Xi’an Jiaotong University

30

The Memory Mountain

¢ Read throughput (read bandwidth)
§ Number of bytes read from memory per second (MB/s)

¢ Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
§ Compact way to characterize memory system performance.

Xi’an Jiaotong University

31

Memory Mountain Test Function
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
 * array "data" with stride of "stride“,
 * using 4x4 loop unrolling.
 */
int test(int elems, int stride) {
 long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
 long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
 long length = elems, limit = length - sx4;

 /* Combine 4 elements at a time */
 for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
 for (; i < length; i++) {

acc0 = acc0 + data[i];
}

 return ((acc0 + acc1) + (acc2 + acc3));
}

Call test() with many
combinations of elems
and stride.

For each elems and
stride:

1. Call test() once to
warm up the caches.

2. Call test() again and
measure the read
throughput(MB/s)

Xi’an Jiaotong University

32

The Memory Mountain

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

Xi’an Jiaotong University

33

128m
32m

8m
2m

512k
128k

32k
0

4000

8000

12000

16000

20000

24000

28000

32000

s1
s3

s5
s7

s9
s11

Size (bytes)

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Stride (x8 bytes)

The Memory Mountain

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

Core i5 Haswell
3.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Xi’an Jiaotong University

34

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

s1
s3

s5
s7

s9
s11

Size (bytes)

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Stride (x8 bytes)

No
prefetching

2008 Memory Mountain
Core 2 Duo
2.4 GHz
32 KB L1 d-cache
6MB L2 cache
64 B block size

Xi’an Jiaotong University

35

Closer Look at Stride Effects

SizeStride

8 elems per
cache block

128K

0

5000

10000

15000

20000

25000

30000

35000

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

M
B/

se
c

Throughput for size = 128K

Measured

Miss ratio = stride/8

Miss ratio = 1.0

stride

Xi’an Jiaotong University

36

Today

¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

Xi’an Jiaotong University

37

Matrix multiplication

Out[i, j] =
 dot product(A[i, ..], B[..,j])
 = sum (

a[i, 0] * b[0, j],
a[I, 1] * b[1, j]

)

Xi’an Jiaotong University

38

Matrix Multiplication Example

¢ Description:
§ Multiply N x N matrices
§ Matrix elements are

doubles (8 bytes)
§ O(N3) total operations
§ N reads per source

element
§ N values summed per

destination
§ but may be able to

hold in register

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Variable sum
held in register

matmult/mm.c

Xi’an Jiaotong University

39

Miss Rate Analysis for Matrix Multiply

¢ Assume:
§ Block size = 32B (big enough for four doubles)
§ Matrix dimension (N) is very large

§ Approximate 1/N as 0.0
§ Cache is not even big enough to hold multiple rows

¢ Analysis Method:
§ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

Xi’an Jiaotong University

40

Layout of C Arrays in Memory (review)
¢ C arrays allocated in row-major order

§ each row in contiguous memory locations
§ a[i][j] = a[i*N + j] where N is the number of columns

¢ Stepping through columns in one row:
§ for (i = 0; i < N; i++)

sum += a[0][i];
§ accesses successive elements
§ if block size (B) > sizeof(aij) bytes, exploit spatial locality

§ miss rate = sizeof(aij) / B
¢ Stepping through rows in one column:

§ for (i = 0; i < n; i++)
sum += a[i][0];

§ accesses distant elements
§ no spatial locality!

§ miss rate = 1 (i.e. 100%)

Xi’an Jiaotong University

41

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
 A B C

matmult/mm.c

Block size = 32B (four doubles)

Xi’an Jiaotong University

42

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
 A B C
 0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)

Xi’an Jiaotong University

43

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
 A B C

matmult/mm.c

Block size = 32B (four doubles)

Xi’an Jiaotong University

44

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
 A B C
 0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)

Xi’an Jiaotong University

45

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
 A B C

matmult/mm.c

Block size = 32B (four doubles)

Xi’an Jiaotong University

46

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
 A B C
 1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)

Xi’an Jiaotong University

47

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• avg misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• avg misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Xi’an Jiaotong University

48

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki
kji
ijk
jik
kij
ikj ijk / jik (1.25)

jki / kji (2.0)

kij / ikj (0.5)

Cycles per inner loop iteration

Xi’an Jiaotong University

49

Today

¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality

Xi’an Jiaotong University

50

Example: Matrix Multiplication

a b

i

j

x
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n + j] += a[i*n + k] * b[k*n + j];
}

Xi’an Jiaotong University

51

Cache Miss Analysis
¢ Assume:

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ First iteration:
§ n/8 + n = 9n/8 misses

§ Afterwards in cache:
(schematic)

x=

n

x=
8 wide

Xi’an Jiaotong University

52

Cache Miss Analysis
¢ Assume:

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ Second iteration:
§ Again:

n/8 + n = 9n/8 misses

¢ Total misses:
§ 9n/8 n2 = (9/8) n3

n

x=
8 wide

Xi’an Jiaotong University

53

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i1++)
 for (j1 = j; j1 < j+B; j1++)
 for (k1 = k; k1 < k+B; k1++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

x
c

=
c

+

Block size B x B

matmult/bmm.c

Xi’an Jiaotong University

54

Cache Miss Analysis
¢ Assume:

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks fit into cache: 3B2 < C

¢ First (block) iteration:
§ B*B/8 misses for each block
§ 2n/B x B2/8 = nB/4

(omitting matrix c)

§ Afterwards in cache
(schematic)

x=

x=

Block size B x B

n/B blocks

Xi’an Jiaotong University

55

Cache Miss Analysis
¢ Assume:

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks fit into cache: 3B2 < C

¢ Second (block) iteration:
§ Same as first iteration
§ 2n/B x B2/8 = nB/4

¢ Total misses:
§ nB/4 * (n/B)2 = n3/(4B)

x=

Block size B x B

n/B blocks

Xi’an Jiaotong University

56

Blocking Summary

¢ No blocking: (9/8) n3 misses
¢ Blocking: (1/(4B)) n3 misses

¢ Use largest block size B, such that B satisfies 3B2 < C
§ Fit three blocks in cache! Two input, one output.

¢ Reason for dramatic difference:
§ Matrix multiplication has inherent temporal locality:

§ Input data: 3n2, computation 2n3

§ Every array elements used O(n) times!
§ But program has to be written properly

Xi’an Jiaotong University

57

Cache Summary

¢ Cache memories can have significant performance impact

¢ You can write your programs to exploit this!
§ Focus on the inner loops, where bulk of computations and memory

accesses occur.
§ Try to maximize spatial locality by reading data objects sequentially

with stride 1.
§ Try to maximize temporal locality by using a data object as often as

possible once it’s read from memory.

