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Today

¢ Cache memory organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality
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Cache Memories

¢ Cache memories are small, fast SRAM-based memories 
managed automatically in hardware
§ Hold frequently accessed blocks of main memory

¢ CPU looks first for data in cache
¢ Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache 
memory
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What it Really Looks Like

Bus interface

ALU

Register file

CPU chip

Cache 
memory

Core i7-3960XAMD FX 8150Nehalem
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General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size
 = S x E x B data bytes

valid bit
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Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset
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Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid?   +

block offset

tag
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid?   +

int (4 Bytes) is here

block offset

If tag doesn’t match (= miss): old line is evicted and replaced
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Direct-Mapped Cache Simulation
4-bit addresses (address space size M=16 bytes) 
S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):
 0 [00002], 
 1 [00012],  
 7 [01112],  
 8 [10002],  
 0 [00002]

x
t=1 s=2 b=1

xx x

0
v Tag Block

0
0
0

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

0 M[0-1]Set 0
Set 1
Set 2
Set 3
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

2 lines per set

S sets
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes (= hit)

block offset

tag
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes (= hit)

block offset

tag 54

short int (2 Bytes) is here

No match or not valid (= miss): 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …
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2-Way Set Associative Cache Simulation

4-bit addresses (M=16 bytes) 
S=2 sets, E=2 blocks/set, B=2 bytes/block 

Address trace (reads, one byte per read):
 0 [00002], 
 1 [00012],  
 7 [01112],  
 8 [10002],  
 0 [00002]

xx
t=2 s=1 b=1

x x

0
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
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What about writes?
¢ Multiple copies of data exist:

§ L1, L2, L3, Main Memory, Disk

¢ What to do on a write-hit?
§ Write-through (write immediately to memory)
§ Write-back (defer write to memory until replacement of line)

§ Needs a dirty bit (set if data has been written to)

¢ What to do on a write-miss?
§ Write-allocate (load into cache, update line in cache)

§ Good if more writes to the location will follow
§ No-write-allocate (writes straight to memory, does not load into cache)

¢ Typical
§ Write-through + No-write-allocate
§ Write-back + Write-allocate

0 1 2 B-1tagd

B = 2b bytesdirty bit

v

valid bit
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Practical Write-back Write-allocate

¢ A write to address X is issued
¢ If it is a hit

§ Update the contents of block
§ Set dirty bit to 1 (bit is sticky and only cleared on eviction)

¢ If it is a miss
§ Fetch block from memory (per a read miss)
§ The perform the write operations (per a write hit)

¢ If a line is evicted and dirty bit is set to 1
§ The entire block of 2b bytes are written back to memory
§ Dirty bit is cleared (set to 0)
§ Line is replaced by new contents

0 1 2 B-1tagd

B = 2b bytesdirty bit

v

valid bit
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Why Index Using Middle Bits? 

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

t bits 0…01 100
Address of int:

find set

Standard Method: 
Middle bit indexing

t bits1…11 100
Address of int:

find set

Alternative Method:
High bit indexing
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Illustration of Indexing 
Approaches
¢ 64-byte memory

§ 6-bit addresses

¢ 16 byte, direct-mapped cache
¢ Block size = 4. (Thus, 4 sets; why?)
¢ 2 bits tag, 2 bits index, 2 bits offset

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx
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Middle Bit Indexing

¢ Addresses of form TTSSBB
§ TT Tag bits
§ SS Set index bits
§ BB Offset bits

¢ Makes good use of spatial locality

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx
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High Bit Indexing

¢ Addresses of form SSTTBB
§ SS Set index bits
§ TT Tag bits
§ BB Offset bits

¢ Program with high spatial locality 
would generate lots of conflicts

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx
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Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way, 
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for 
all caches. 
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Kunpeng 920 Cache Hierarchy
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Kunpeng 920 Cache Hierarchy
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Cache Performance Metrics
¢ Miss Rate

§ Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

§ Typical numbers (in percentages):
§ 3-10% for L1
§ can be quite small (e.g., < 1%) for L2, depending on size, etc.

¢ Hit Time
§ Time to deliver a line in the cache to the processor

§ includes time to determine whether the line is in the cache
§ Typical numbers:

§ 4 clock cycle for L1
§ 10 clock cycles for L2

¢ Miss Penalty
§ Additional time required because of a miss

§ typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers
¢ Huge difference between a hit and a miss

§ Could be 100x, if just L1 and main memory

¢ Would you believe 99% hits is twice as good as 97%?
§ Consider this simplified example: 

       cache hit time of 1 cycle
       miss penalty of 100 cycles

§ Average access time:
  97% hits:  1 cycle + 0.03 x 100 cycles = 4 cycles
  99% hits:  1 cycle + 0.01 x 100 cycles = 2 cycles

¢ This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

¢ Make the common case go fast
§ Focus on the inner loops of the core functions

¢ Minimize the misses in the inner loops
§ Repeated references to variables are good (temporal locality)
§ Stride-1 reference patterns are good (spatial locality)
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Today

¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality
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The Memory Mountain

¢ Read throughput (read bandwidth)
§ Number of bytes read from memory per second (MB/s)

¢ Memory mountain: Measured read throughput as a 
function of spatial and temporal locality.
§ Compact way to characterize memory system performance. 
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Memory Mountain Test Function
long data[MAXELEMS];  /* Global array to traverse */

/* test - Iterate over first "elems" elements of
 *        array "data" with stride of "stride“, 
 *        using 4x4 loop unrolling.                                                     
 */ 
int test(int elems, int stride) {
    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long length = elems, limit = length - sx4;

    /* Combine 4 elements at a time */
    for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
    for (; i < length; i++) {

acc0 = acc0 + data[i];
}

    return ((acc0 + acc1) + (acc2 + acc3));
}

Call test() with many 
combinations of elems 
and stride.

For each elems and 
stride:

1. Call test() once to 
warm up the caches.

2. Call test() again and 
measure the read 
throughput(MB/s)
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The Memory Mountain
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Closer Look at Stride Effects

SizeStride

8 elems per 
cache block
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stride
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Today

¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality
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Matrix multiplication

Out[i, j] = 
    dot product(A[i, ..], B[..,j])
 = sum (  

a[i, 0] * b[0, j],
a[I, 1] * b[1, j]

)
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Matrix Multiplication Example

¢ Description:
§ Multiply N x N matrices
§ Matrix elements are 

doubles (8 bytes)
§ O(N3) total operations
§ N reads per source 

element
§ N values summed per 

destination
§ but may be able to 

hold in register

/* ijk */
for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++) 
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
} 

Variable sum
held in register

matmult/mm.c



Xi’an Jiaotong University

39

Miss Rate Analysis for Matrix Multiply

¢ Assume:
§ Block size = 32B (big enough for four doubles)
§ Matrix dimension (N) is very large

§ Approximate 1/N as 0.0
§ Cache is not even big enough to hold multiple rows

¢ Analysis Method:
§ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Layout of C Arrays in Memory (review)
¢ C arrays allocated in row-major order

§ each row in contiguous memory locations
§ a[i][j] = a[i*N + j]  where N is the number of columns

¢ Stepping through columns in one row:
§ for (i = 0; i < N; i++)

sum += a[0][i];
§ accesses successive elements
§ if block size (B) > sizeof(aij) bytes, exploit spatial locality

§ miss rate = sizeof(aij) / B
¢ Stepping through rows in one column:

§ for (i = 0; i < n; i++)
sum += a[i][0];

§ accesses distant elements
§ no spatial locality!

§ miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++) 
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
} 

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
  A B C
    

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++) 
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
} 

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
  A B C
  0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];   
  }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
  A B C
    

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];   
  }
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
  A B C
  0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
} 

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
  A B C
    

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
} 

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
  A B C
  1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• avg misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• avg misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
   sum = 0.0;
   for (k=0; k<n; k++) 
     sum += a[i][k] * b[k][j];
   c[i][j] = sum;
 }
} 

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
  r = a[i][k];
  for (j=0; j<n; j++)
   c[i][j] += r * b[k][j];   
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
   r = b[k][j];
   for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
 }
}
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Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki
kji
ijk
jik
kij
ikj ijk / jik (1.25)

jki / kji (2.0)

kij / ikj (0.5)

Cycles per inner loop iteration
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Today

¢ Cache organization and operation
¢ Performance impact of caches

§ The memory mountain
§ Rearranging loops to improve spatial locality
§ Using blocking to improve temporal locality
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Example: Matrix Multiplication

a b

i

j

x
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
             for (k = 0; k < n; k++)
          c[i*n + j] += a[i*n + k] * b[k*n + j];
}
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Cache Miss Analysis
¢ Assume: 

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ First iteration:
§ n/8 + n = 9n/8 misses

§ Afterwards in cache:
(schematic)

x=

n

x=
8 wide



Xi’an Jiaotong University

52

Cache Miss Analysis
¢ Assume: 

§ Matrix elements are doubles
§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)

¢ Second iteration:
§ Again:

n/8 + n = 9n/8 misses

¢ Total misses:
§ 9n/8 n2 = (9/8) n3 

n

x=
8 wide
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
             for (k = 0; k < n; k+=B)
   /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i1++)
                      for (j1 = j; j1 < j+B; j1++)
                          for (k1 = k; k1 < k+B; k1++)
                       c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

x
c

=
c

+

Block size B x B

matmult/bmm.c
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Cache Miss Analysis
¢ Assume: 

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks       fit into cache: 3B2 < C

¢ First (block) iteration:
§ B*B/8 misses for each block
§ 2n/B x B2/8 = nB/4

(omitting matrix c)

§ Afterwards in cache
(schematic)

x=

x=

Block size B x B

n/B blocks
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Cache Miss Analysis
¢ Assume: 

§ Cache block = 8 doubles
§ Cache size C << n (much smaller than n)
§ Three blocks       fit into cache: 3B2 < C

¢ Second (block) iteration:
§ Same as first iteration
§ 2n/B x B2/8 = nB/4

¢ Total misses:
§ nB/4 * (n/B)2 = n3/(4B)

x=

Block size B x B

n/B blocks
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Blocking Summary

¢ No blocking: (9/8) n3  misses
¢ Blocking:  (1/(4B)) n3  misses

¢ Use largest block size B, such that B satisfies 3B2 < C
§ Fit three blocks in cache!  Two input, one output.

¢ Reason for dramatic difference:
§ Matrix multiplication has inherent temporal locality:

§ Input data: 3n2, computation 2n3

§ Every array elements used O(n) times!
§ But program has to be written properly
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Cache Summary 

¢ Cache memories can have significant performance impact

¢ You can write your programs to exploit this!
§ Focus on the inner loops, where bulk of computations and memory 

accesses occur. 
§ Try to maximize spatial locality by reading data objects sequentially 

with stride 1.
§ Try to maximize temporal locality by using a data object as often as 

possible once it’s read from memory. 


